VIII. Applications of Convex Surfaces

A. <u>Bennequin type inequalities</u>

we first prove an inequality for closed surfaces

 $\frac{Th^{m}}{(M,1)} = \text{tight contact manifold}$ $\sum_{i} a \text{ surface in } M$ if e(1) is the Euler class of f, then $|\langle e(1), [\Sigma] \rangle| \begin{cases} \epsilon - \chi(\Sigma) & \text{if } \Sigma + s^2 \\ \epsilon & 0 & \text{if } \Sigma = s^2 \end{cases}$

recall if v is a vector field in $\frac{2}{3}$ that is transverse to the zero section then $v^{-1}(zero section)$ is a 1-manifold $8 \le M$ el3) is Poincaré dual to the homology closs [8]so $el3 \ge H^2(M)$ and thus can be evaluated on elements of $H_2(M)$ like [z]the value $\langle el3 \rangle, [\underline{\Sigma}] \rangle$ is just the signed count of zeros of v on \overline{z} (i.e. $3l_{\overline{z}}$ is 4-dimensional the zero section and image of v are both 2-dimensional so take signed count of intersections)

<u>exercise</u>: the above inequality implies only a finite number of cohomology classes can be realized as the

Proof: given
$$\Sigma \neq S^2$$
 make it convex
i) Γ is a union of S' (and $\chi(S^1)=0$)
c) no component of Γ bounds a disk by the Grave
critenion $(Th^{\underline{m}} \underline{VI}. 10)$
i) $\Rightarrow \chi(\Sigma) = \chi(\Sigma_{+}) + \chi(\Sigma_{-})$
exercise: $\langle \mathcal{C}(3), \Sigma\Xi \rangle = \chi(\Sigma_{+}) - \chi(\Sigma_{-})$
Hint: Consider a vector field directing Σ_{1}
it is a section of $T\Sigma$ and of \mathcal{C}
So $\langle \mathcal{C}(3), [\Sigma] \rangle - \chi(\Sigma) = -2\chi(\Sigma_{-})$
 ≥ 0 since $\chi(each component of \Sigma) \leq 0$
 $\therefore -\langle \mathcal{C}(3), [\Sigma] \rangle = \chi(\Sigma) = -2\chi(\Sigma_{-})$
Similarly $-\langle \mathcal{C}(3), [\Sigma] \rangle = -\chi(\Sigma)$
 $i. -\langle \mathcal{C}(3), [\Sigma] \rangle = -\chi(\Sigma)$
 $i. -\langle \mathcal{C}(3), [\Sigma] \rangle = -\chi(\Sigma)$
 $f = S^2$ the Giraux criterian says Γ connected
and so $S^2 \setminus \Gamma = 0^*_{+} \cup D^*_{-}$
 $i. \langle \mathcal{C}(3), [\Sigma] \rangle = 0$

Thm2[Bennequín mequality]: ____

(M, ?) a tight contact manifold
(1) if T a null-homologous transverse knot
then

$$SL(T) \leq -\chi(\Sigma)$$

for any Σ with $\partial \Sigma = T$
(2) If L a null-homologous Legendrian knot
then
 $tb(L) + |r(L)| \leq -\chi(\Sigma)$
for any Σ with $\partial \Sigma = L$

Proof:
let L be a Lagrangian knot and
E be a Seifert surface for L
we first prove
$$tb(L) + r(L) \leq -X(\Xi)$$

to this end we positively stabilize L untill $tb(L) < 0$
note this does not change $tb(L) + r(L)$ so if
we can prove inequality for stabilized L (still denoted
by L) then we are done
Since $tv_3(L, \Xi) = tb(L) < 0$ we can make Ξ concept
 $Claim: tb(L) + X(\Xi_{+}) + X(\Xi_{-}) = X(\Xi)$
Aroof: Γ_{Ξ} has $-tb(L)$ ares (since $tb(L) = -\frac{1}{2}(\Gamma_{\Xi}^{T} nL)$
and each arc has
 $Call the ars \Gamma_{a}$
 $Th^{D} III.9$

$$\chi(\Sigma_{+}) + \chi(\Sigma_{-}) = \chi(\Sigma \setminus \Gamma_{\Sigma})$$

$$= \chi(\Sigma \setminus \Gamma_{\alpha}) \setminus \Gamma_{c}) \quad \text{since } \chi(\Gamma_{c}) = 0$$

$$= \chi(\Sigma) - tb(L) \qquad \text{each are has } \chi = 1$$

$$\sum_{i=1}^{n} \chi(\Sigma) - tb(L) \qquad \text{each are has } \chi = 1$$

$$\frac{1}{2} \chi(\Sigma) - tb(L) \qquad \text{for our former of } \Gamma_{\Sigma} \quad \text{bounds}$$

$$a \quad disk$$

$$\sum_{i=1}^{n} \chi(\Sigma_{+}) = \frac{1}{2} disks \quad in \quad \Sigma_{+} \qquad \lim_{i=1}^{n} \chi(\Sigma_{+}) = \frac{1}{2} disks \quad \leq -\chi(other \ companents)$$

$$\leq \# disks \leq -Hb(L) \qquad \leq 0$$

now

$$tb(L) + r(L) \leq tb(L) + r(L) - 2tb(L) - 2\chi(\Sigma_{+})$$

$$= -tb(L) + r(L) - 2\chi(\Sigma_{+})$$

$$= -tb(L) + \chi(\Sigma_{+}) - \chi(\Sigma_{-}) - 2\chi(\Sigma_{+})$$

$$Th = VII.9$$

$$= -tb(L) - \chi(\Sigma_{-}) - \chi(\Sigma_{+})$$

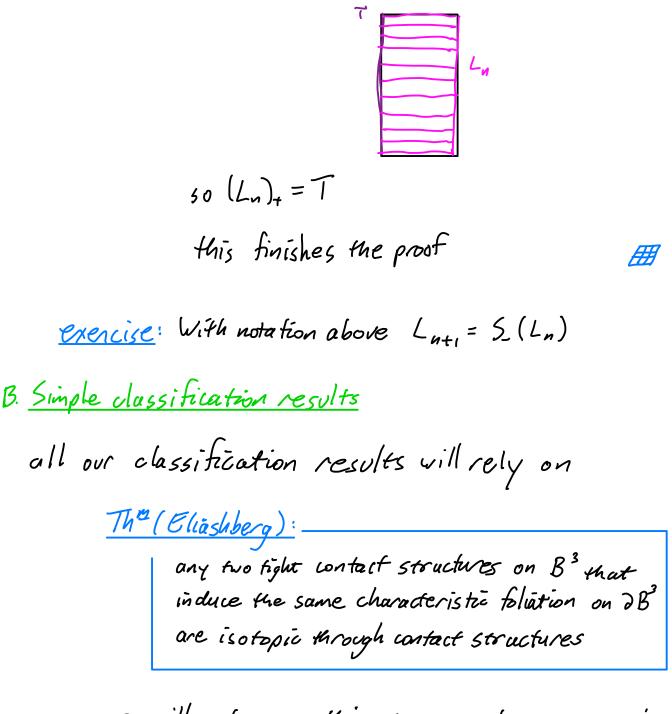
$$= -\chi(\Sigma)$$
exercise: give similar proof that $tb(L) - r(L) \leq -\chi(\Sigma)$

now if Ta transverse knot and I a surface with dI=T

Here we claim there is a Legendrian L with

$$45(L)$$
 negative such that the transverse
push-off of L is T i.e. $L_{+} = T$
from Section III we know
 $SP(T) = tb(L) - r(L)$
 $\therefore SP(T) = -X(E)$ from above
Now for the claim
by $Th = II.3$, T has a neighborhood N
contactomorphic to $N_{E} = \{(r, \sigma, \phi) \mid r \le L\}$ in
 $(R^{2} \times S', 3 = ker(d\phi + r^{2} k \sigma))$.
Note $T_{c} = \{(r, \sigma, \phi) \mid r = c\}$ has linear characteristic
folicition of slope $-\frac{1}{L^{2}}$
choose $n \in IN$ st. $\frac{1}{\sqrt{n}} \le E$ then $T_{c} \in N_{c} \equiv N$
has folicition of slope $-n$
let L_{n} be a leaf of $(T_{c})_{3}$

note L_n is smoothly isotopic to T<u>exercise</u>: $Hb(L_n) = -n$ L_n and T cobound an annolus i with T_i



we will not prove this theorem but use it in our other classification results

Eliashberg proved this by studying families of foliations on 5²

Circurs gave a proof using conversor faces

Th 23

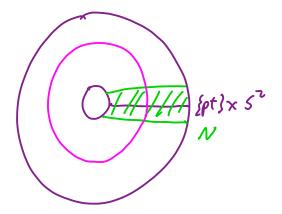
up to iso topy, there is a unique tight contact structure on 53

Proof:
we know from bennequin (or Eliasliberg - Gromov) that
$$S^3$$
 addinits
a tight contact structure
now suppose 3,3' are two thight contact structures on S^3
fix a point $p \in S^3$ there is an isotopy to of S^3 such that
 $p(p)=p$ for all t and
 $d(p_1)_p(3')=3$
so $d(p_1)(S')$ is an isotopy of 3' so that $3'=7$ at p
the proof of Darboux's theorem, $Th^{\frac{n}{2}}II.2$, says we can now
find an isotopy of 1' so that $3'=7$ and anbhal U of p
now let S^2 be a sphere in U that bounds p
note $S^3(S^2 = B_3^3 \cup B_{out}^3)$ where $B_{1n}^3 = CU$
we have $3 = 3'$ on U so $S_1^2 = S_1^2$.
Eliashberg's result ebove says 5 and 1' are isotopic
on B_{out}
after this iso topy $3=3'$ on all of S^3

Prof: (D-4) v (1-4) is a Stein 4-manifold by Eliashberg - Compt 44^m in Section I (D-4) v (1-4) = 5' × D³ So D(5' × D³) is 5' × 5² with a tight contact structure.

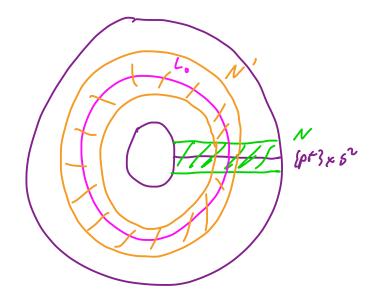
now suppose
$$\frac{1}{6}$$
, are two tight contact structures on 5×5^{2}
let $S_{1} = \{pt\} \times 5^{2}$ in 5×5^{2}
we can isotop S_{1} so it is convertin 3_{1} ($Th^{\pm}III.5$)
by Groux critenion ($Th^{m}III.10$) we know $\Gamma_{S_{1}}$ is a
simple clased curve
by Giraux flexibility ($Th^{m}III.6$) we can assume
isotop S_{1} so that $(G_{1})_{1}$ is the same as
 $(S_{0})_{3}$ (1.e. there is some identification of S_{1} with S_{0}
so this is true)
now we can isotop S_{1} to S_{0} so that $(S_{1})_{1}$ is
taken to $(S_{0})_{1}$ (and extend to an ambient isotopy)
push S_{1} for ward by this isotopy and we
see that, after isotoping S_{1} , we can assume $S_{0}=S_{1}$
and $(S_{0})_{2}=(S_{1})_{0}$

by Th^mI.5 we may further isotop ?, so that ?, and ?, agree on a neighborhood N=Ix5² of So



we can assume Lo=L, in N often stabilizing Lo or L, we can assume their contact framings are the same

- thus there is an isotopy L, to Lo and extend this to an ambient isotopy of 5'x 5² pushing ?, forward by this isotopy we can assume Lo=L1
 - a further isotopy of ?, will arrange ?=?, along Lo now the proof of Th # II. 4 says we can isotop ?, so that ?, = ?, in a neighborhood N' of Lo (moreover this isotopy is fixed on N)



50 30=3, on NUN

$$\frac{\text{Nofe}}{S' \times S' - (N \cup N')}$$

$$= \left(\left(S' \times S^{2} \right) - (I \times S^{2} \right) \right) - \left(S' \times D^{2} \right)$$

$$= \left(S' \times (S^{2} - D^{2}) \right) - (I \times (S^{2} - D^{2}))$$

$$= \left(S' \times D^{2} \right) - (I \times D^{2}) \qquad \text{different } D^{2} \xrightarrow{D^{2}} D^{2}$$

$$= J \times D^{2} \qquad \text{where } \bigoplus_{I=1}^{J} S'$$

$$= B^{3} \qquad I$$

let
$$5^2$$
 be a sphere in $N \cup N'$ that bounds
a ball B' in $5' \times 5^{L}$
we know $3_{0}^{=}$?, near $5^{2} = 5_{1}^{2}$,
now Eliasberg's classification on B^{3}
says we can further isotop ?, to ?, on B^{3}
 $: ?_{0}^{=}$?, on all of $5' \times 5^{2}$!

Proof: we first show that there is some such tight contact

structure. to this end consider the R' (x, y, Z)~(x+4, y, Z) with 3=kon (dz-yax) its universal cover is R3 with standard contact structure so is tight by Bennequin $S = \{(x_1, y_1, z) : x^2 + y^2 \le \varepsilon^2\}$ is a solid torus v======+y==y is a contact vector field to as it induces the dividing curves $\Gamma = \{z = \pm \epsilon\}$ on ∂S by Girows realization we can assume I is (25), if n=0 for n to I a ditteomorphism of S sending I to curves of slope n so] at least one tight structure as in the theorem. now assume ? ? are two tight contact structures on S'XDL inducing I on 2(S'xOL) The I.5 says we can isotop ? to agree with ? in a nbhd N of $\partial (5' \times D^2)$ we can find a torus T in N parallel to 2(5'+02) that is conver with the same dividing set as 2(s'r 02) now isotop T so that T is in standard form with ruling slope as (in both 3=3' on N) let D=D' be a dish in S'×D' with DD=DD'=ruling curve on T (and interior in solid forus S that T bounds) note the disks intersect I'T three

50 lemma III. Il says the dividing set on D=D' in 3 and 3' near 2D is Now the Giroux criterion says P has no closed curves thus I (and I'd) is isotopic to Using Giroux flexibility we can isotop D so that D'zi is the same as D, (under natural identification of D with D') and 150topy fixed near 2D (since 3=3' non 2D) thus there is a smooth isotopy of D' to D taking D'zi to Dgi extend to an ambient isotopy and push i forward by it thus we can assume ?= ?' on N and D=D' and ?, ?' induce the same foliation on D again the proof of The I.5 says we can further isotop 3' to agree with 3 in a nobel N'of D note (5'x D')-(NUN') is a 3-ball let 5² be a sphere in NUN' bounding a 3-ball B st. NUN' UB is 5'x D² since 5² = 5², Ehashberg's classification of tight structures on B³ says we can isotop 3' to agree with 8 m B³ thus 3' can be isotoped to agree with 8 on all of 5'x D²!

Show that it is a hight contact structure on S'x D^L with convex boundary having 2 dividing curves of slope n 62 then in for any rational sen there is a torus T C S'x D^L that is isotopic to $\partial(S'x D^L)$ and convex with 2 dividing curves of slope 5 moreover, if s<n then we could find such a T with lineon folation of slopo s <u>Hint</u>: use Th^m above and consider the model $(S'x R_i^2, ker(d\phi + r^2d\phi))$ and recall how to perturb a linearly foliated torus to

a convex torus

C. Isotopy classes of contact structures

lemma 6:

If F_{i} , F_{i} are two singular folicition that are both divided by Γ then there is a one-to-one correspondence between Tight $(M; F_{i})$ and Tight $(M; F_{i})$

exercise: Prove this using Girown realization

thus Tight (M; P) is well-defined without specifying F the theorems a Save say [Tight (B³; F)]=1 for F a conneted curve

and

finally if DM is a torus and s is a slope on DM then Tight (M; s) denotes Tight (M; F) where I consists of two curves of slope s so [Tight(5' × D²; n)]=1

if dM=T, U..., UT, , let s,,... Sn be slopes on a torus Tight (M; S,,..., Sn) denotes Tight (M; P) Where P on Ti consists of two curves of slope s;